
Hi, Robert: 


As a software engineer, I've come in contact with an extensive number of 

products and code libraries that fall under the category of

'inventions'. With regard to which of these are patentable, and which 

fall under the category of prior art, I'm sure you well realize that the 

distinction is fine indeed. In order to provide a more cogent comment in 

this regard, I was wondering if it would be possible to get a link to 

the criteria that you use in differentiating between the two. 


Generally, I tend to think of a patentable software product as the 

combination of both an original algorithm and one or more reference 

implementations of the algorithm, which seems to be in keeping with the

USPTO guidelines. Where the USPTO seems to be getting into some level of

trouble is in determining whether either the algorithm or the 

implementation is an original work of the patent author, or if it is 

sufficiently different or original in its design as a derivative work to 

qualify as a patentable work of its own. 


An aspect of software patenting that I believe causes a great measure of 

concern in the industry is the perception that a patent removes the 

invention from the realm of public domain. All modern software products 

consist of collaborative elements, some publicly available, others as 

purchased components, all of which go together to form the product, 

which represents the labor and intellectual capital of a

software-producing enterprise. 


The concern is that if one of the publicly available components becomes 

patented, that the definition of the patent may be legally manipulated 

to encroach or infringe upon the definition of the product that the 

patented component is included in. This would cause at least some 

measure of disruption in the enterprise's ability to perform its 

appointed task. This scenario falls into the category of being able to 

demonstrate prior art, but now it becomes incumbent upon the user of the 

component to prove that the component was indeed previously available, 

either in the public domain or as an original work of the enterprise. 


Further, the presence of patented software processes or components may

also be the cause of some level of creative inhibition in the software

industry, as the time required to search for prior art and patented 

origins for a particular process or algorithm progressively increases. 

There is less inclination to be competitive in a particular category of

software design, and to cede the field to the patent holder in favor of

concentrating energy, effort, and capital into more lucrative channels. 


The beneficiaries of this effect are the larger corporations, which have 

the intellectual and financial resources to monopolize whole segments of 




software production. This certainly does not benefit the personal 

inventor, who in many cases is required to release interest in the

patent that he or she originated to the employing organization, in 

return for some small measure of compensation that in many cases does 

not reflect the utility or contribution of the patented process or

algorithm. Correct me if I'm wrong, but wasn't it the original charter

of the USPTO to protect the personal inventor from this type of

infringement?


I hope that the points that I've brought up make sense in the context of 

the work that you're doing, and I look forward to discussing these 

issues further with you. 


Sincerely,


Roby Gamboa

Senior Software Engineer

Iris Financial Engineering and Systems, LLC 

456 Montgomery St., Suite 800 

San Francisco, Ca. 94104 

(415) 835-7853 

roby@irisfinancial.com





